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Overview of the 
theoretical background in 

Watch on YouTube:
Part I: Theoretical overview
Part II: The inviscid problem
Part III: The viscous flow

https://youtu.be/HfVLLnzjPkU
https://youtu.be/uhrFI5l-7V8
https://youtu.be/CzAsp_ku5RA
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The Navier-Stokes equations are to fluid dynamics 
what Maxwell’s equations are to electromagnetism 

(more on that later)
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One of the seven millennium prize 
problems published by 

The Clay Mathematics Institute
“Although these equations were written down in 

the 19th Century, our understanding of them 
remains minimal. The challenge is to make 

substantial progress toward a mathematical 
theory which will unlock the secrets hidden in the 

Navier-Stokes equations.”
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Computational Fluid Dynamics is all 
about solving numerically the 

Navier-Stokes equations
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From Richard Feynman Lectures:

“When we drop the viscosity term, we will be 
making an approximation which describes some 

ideal stuff rather than real water. John 
von Neumann was well aware of the tremendous 
difference [...], [...] the main interest was in solving 

beautiful mathematical problems with this 
approximation which had almost nothing to do 
with real fluids. He characterized the theorist 
who made such analyses as a man who studied 

“dry water.” [...].  We are postponing a discussion 
of real water to the next chapter.”

http://www.feynmanlectures.caltech.edu/II_40.html 

http://www.feynmanlectures.caltech.edu/II_40.html
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In aerodynamics, the main effect of 
viscosity is to create a thin 

Boundary Layer (BL) on all lifting 
and non-lifting surfaces
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pressure in BL thickness, Prandlt 

mixing length hypothesis. 
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Why does a plane fly:
the inviscid potential flow

 - up next - 
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